翻訳と辞書
Words near each other
・ Topolog Viaduct
・ Topolog, Tulcea
・ Topologel River
・ Topological abelian group
・ Topological algebra
・ Topological Boolean algebra
・ Topological category
・ Topological censorship
・ Topological combinatorics
・ Topological complexity
・ Topological conjugacy
・ Topological data analysis
・ Topological defect
・ Topological degeneracy
・ Topological degree theory
Topological derivative
・ Topological divisor of zero
・ Topological drugs
・ Topological dynamics
・ Topological entropy
・ Topological entropy in physics
・ Topological excitations
・ Topological fluid dynamics
・ Topological functioning model
・ Topological game
・ Topological graph
・ Topological graph theory
・ Topological group
・ Topological half-exact functor
・ Topological index


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Topological derivative : ウィキペディア英語版
Topological derivative
The topological derivative is, conceptually, a derivative of a shape functional with respect to infinitesimal changes in its topology, such as adding an infinitesimal hole or crack. When used in higher dimensions than one, the term topological gradient is also used to name the first-order term of the topological asymptotic expansion, dealing only with infinitesimal singular domain perturbations. It has applications in shape optimization, topology optimization, image processing and mechanical modeling.
== Definition ==

Let \Omega be an open bounded domain of \mathbb^d , with d \geq 2 , which is subject to a nonsmooth perturbation confined in a small region \omega_\varepsilon(\tilde) = \tilde + \varepsilon \omega of size \varepsilon with \tilde an arbitrary point of \Omega and \omega a fixed domain of \mathbb^d . Let \Psi be a characteristic function associated to the unperturbed domain and \Psi_\varepsilon be a characteristic function associated to the perforated domain \Omega_\varepsilon = \Omega \backslash \overline . A given shape functional \Phi(\Psi_\varepsilon(\tilde)) associated to the topologically perturbed domain, admits the following topological asymptotic expansion:
\Phi(\Psi_\varepsilon(\tilde)) = \Phi(\Psi) + f(\varepsilon) g(\tilde) + o(f(\varepsilon))

where \Phi(\Psi) is the shape functional associated to the reference domain, f(\varepsilon) is a positive first order correction function of \Phi(\Psi) and o(f(\varepsilon)) is the remainder. The function g(\tilde) is called the topological derivative of \Phi at \tilde .

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Topological derivative」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.